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Abstract In the Bayesian approach, to describe a prior distribution on the set [0,1]
of all possible probability values, typically, a Beta distribution is used. The fact that
there have been many successful applications of this idea seems to indicate that there
must be a fundamental reason for selecting this particular family of distributions. In
this paper, we show that the selection of this family can indeed be explained if we
make reasonable invariance requirements.

1 Formulation of the Problem

In the Bayesian approach (see, e.g., [2, 4]), when we do not know the probability
p ∈ [0,1] of some event, it is usually recommended to use a Beta prior distribution
for this probability, i.e., a distribution for which the probability density function
ρ(x) has the form

ρ(x) = c · xα−1 · (1− x)β−1,

where α and β are appropriate constants and c is a normalizing constant – guaran-
teeing that ∫ 1

0
ρ(x)dx = 1.

There have been numerous successful application of the use of the Beta distribu-
tion in the Bayesian approach. How can we explain this success? Why not use some
other family of distributions located on the interval [0,1]?

In this paper, we provide a natural explanation for these empirical successes.
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Comment. The need for such an explanation is especially important now, when the
statistician community is replacing the traditional p-value techniques with more re-
liable hypothesis testing methods (see, e.g., [3, 7]), methods such as the Minimum
Bayesian Factor (MBF) method which is based on using a specific class of Beta
priors

ρ(x) = c · xα−1

that correspond to β = 1; see, e.g., [5].

2 Analysis of the Problem and the Main Result

Main idea. We want to find a natural prior distribution on the interval [0,1], a distri-
bution that describes, crudely speaking, how frequently different probability values
p appear. In determining this distribution, a natural idea to take into account is that,
in practice, all probabilities are, in effect, conditional probabilities: we start with
some class, and in this class, we find the corresponding frequencies.

From this viewpoint, we can start with the original probabilities and with their
prior distribution, or we can impose additional conditions and consider the resulting
conditional probabilities. For example, in medical data processing, we may consider
the probability that a patient with a certain disease recovers after taking the corre-
sponding medicine. We can consider this original probability – or, alternatively, we
can consider the conditional probability that a patient will recover – e.g., under the
condition that the patient is at least 18 years old.

We can impose many such conditions, and, since we are looking for a universal
prior, a prior that would describe all possible situations, it makes sense to consider
priors for which, after such a restriction, we will get the exact same prior for the
corresponding conditional probability.

Let us describe this main idea in precise terms. In general, the conditional prob-
ability P(A |B) has the form

P(A |B) = P(A&B)
P(B)

.

Crudely speaking, this means that when we transition from the original probabilities
to the new conditional ones, we limit ourselves to the original probabilities which
do not exceed some value p0 = P(B), and we divide each original probability by p0.

In these terms, the above requirement takes the following form: for each p0 ∈
(0,1), if we limit ourselves to the interval [0, p0], then the ratios p/p0 should have
the same distribution as the original one.

Definition 1. We say that a probability distribution with probability density ρ(x) on
the interval [0,1] is invariant if for each p0 ∈ (0,1), the ratio x/p0 (restricted to the
values x≤ p0) has the same distribution, i.e., if
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ρ(x/p0 : x≤ p0) = ρ(x).

Proposition 1. A probability distribution is invariant if and only if it has a form

ρ(x) = c · xa

for some c and a.

Proof. The conditional probability density has the form

ρ(x/p0 : x≤ p0) =C(p0) ·ρ(x/p0),

for an appropriate constant C depending on p0. Thus, the invariance condition has
the form

C(p0) ·ρ(x/p0) = ρ(x).

By moving the term C(p0) to the right-hand side and denoting λ
def
= 1/p0 (so that

p0 = 1/λ ), we conclude that

ρ(λ · x) = c(λ ) ·ρ(x), (1)

where we denoted c(λ ) def
= 1/C(1/λ ).

The probability density function is an integrable function – its integral is equal to
1. It is known (see, e.g., [1]) that every integrable solution of the functional equation
(1) has the form

ρ(x) = c · xa

for some c and a. The proposition is thus proven.

Comment. It is worth mentioning that namely these distributions – corresponding to
β = 1 – are used in the Bayesian approach to hypothesis testing [5, 6].

How to get a general prior distribution. The above proposition describes the case
when we have a single distribution corresponding to a single piece of prior informa-
tion. In practice, we may have many different pieces of information. Some of these
pieces are about the probability p of the corresponding event E, some may be about
the probability p′ = 1− p of the opposite event ¬E.

According to Proposition 1, each piece of information about p can be described
by the probability density

ci · xai ,

for some ci and ai. Similarly, each piece of information about p′ = 1− p can be
described by the probability density

c′j · x
a′j

for some c′j and a′j. In terms of the original probability p = 1− p′, this probability
density has the form
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c′j · (1− x)a′j .

Since all these piece of information are independent, a reasonable idea is to multiply
these probability density functions. After multiplication, we get a distribution of the
type

c · xa · (a− x)a′ ,

where a = ∑
i

ai and a′ = ∑
j

a′j. This is exactly the Beta distribution – for α = a+ 1

and β = a′+1.
Thus, we have indeed justified the use of Beta priors.
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